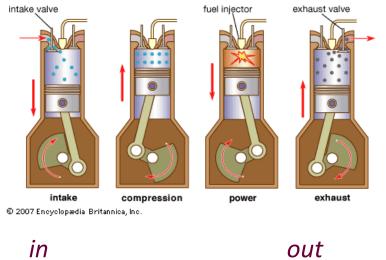


NRMM retrofit and emission reduction system

certification

London Low Emission
Construction Partnership - NRMM
Seminar
City Hall - London
Friday 3rd February 2017


Colin Smith
Transport Energy & Emissions Specialist
Certification Business Development Manager
Energy Saving Trust

energy saving trust

> endorsed product

Emissions formation – diesel engine combustion

HC +
$$(O_2 + N_2)$$
 {heat} + $CO_2 + H_2O + N_2 + NOx + CO + HC + C (PM)$

PM formed when fuel droplets are exposed to high temperatures with lack of local oxygen for combustion

NOx formed when oxygen reacts with Nitrogen at high combustion temperatures

Engine emissions testing

OF SIGHT IS SOB IN THE CONTRACTOR OF STATE OF ST

Table 2
Stage III A/B Emission Standards for Nonroad Diesel Engines

Cat.	Net Power	Date†	со	HC	HC+NOx	NOx	PM				
	kW		g/kWh								
Stage III A											
Н	130 ≤ P ≤ 560	2006.01	3.5	-	4.0	-	0.2				
1	75 ≤ P < 130	2007.01	5.0	-	4.0	-	0.3				
J	37 ≤ P < 75	2008.01	5.0	-	4.7	-	0.4				
K	19 ≤ P < 37	2007.01	5.5	-	7.5	-	0.6				
Stage III B											
L	130 ≤ P ≤ 560	2011.01	3.5	0.19	-	2.0	0.025				
M	75 ≤ P < 130	2012.01	5.0	0.19	-	3.3	0.025				
N	56 ≤ P < 75	2012.01	5.0	0.19	-	3.3	0.025				
Р	37 ≤ P < 56	2013.01	5.0	-	4.7	-	0.025				
† Dates for constant speed engines are: 2011.01 for categories H, I and K; 2012.01 for category J.											

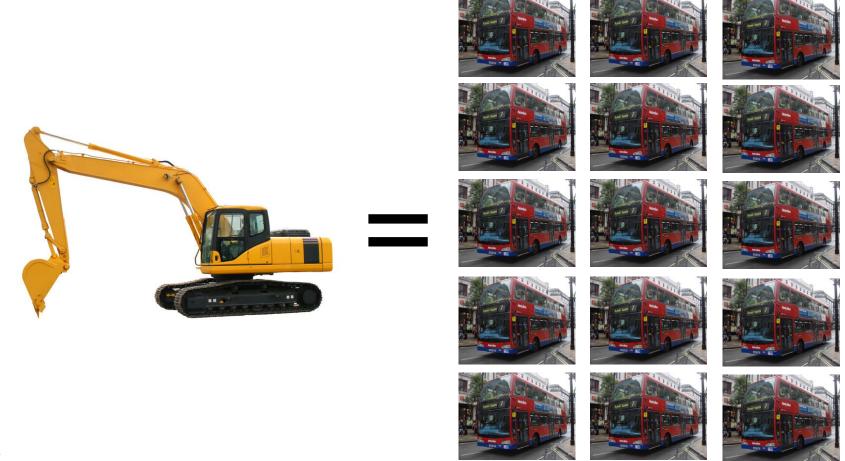
8 pands 40 40 40 80 1000 1200 Time, s

Figure 1. Normalized Speed and Torque over NRTC Cycle

Table 3
Stage IV Emission Standards for Nonroad Diesel Engines

Cat.	Net Power	Date	со	HC	NOx	PM
	kW		g/kWh			
Q	130 ≤ P ≤ 560	2014.01	3.5	0.19	0.4	0.025
R	56 ≤ P < 130	2014.10	5.0	0.19	0.4	0.025

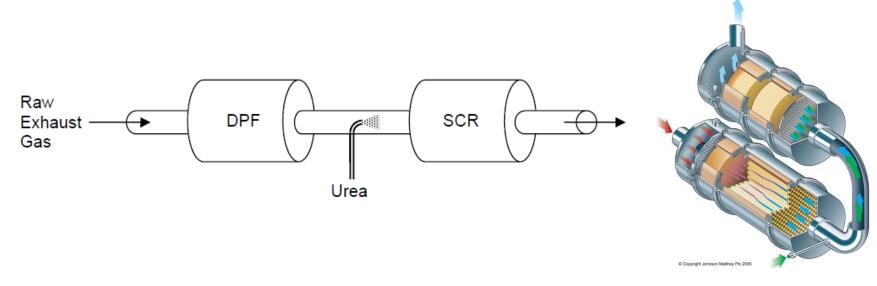
How much pollution comes from construction?


Emission limit for Particulate Matter (PM)

Euro IV truck/bus (LEZ compliant) =

Stage IIIA Excavator (NRMM LEZ Greater London) =

0.02g/kWh


0.30g/kWh

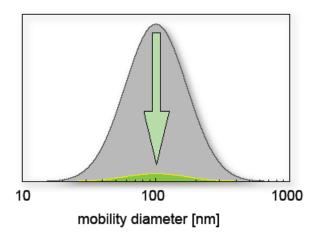
Retrofit as a compliance option

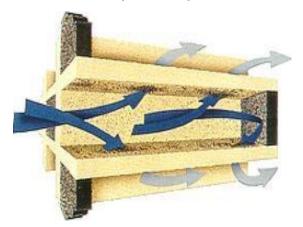
NOx reduction – Selective Catalytic Reduction (SCR)

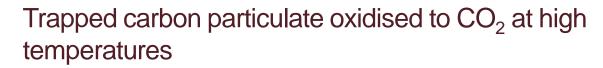
NOx reacts with ammonia over the catalyst and reduces it to nitrogen and water

$$(NO + NO_2) + NH_3$$
 $N_2 + H_2O$ (Full Conversion) $+ N_2 O + NH_3$

Secondary emissions of nitrous oxide and ammonia need to be controlled


Unfortunately not very well developed for the NRMM sector..... yet!


Retrofit as a compliance option



PM reduction – Diesel Particulate Filter (DPF)

Mass: -95% Number: -95%

Fortunately very well established for the NRMM sector

Emission reduction system certification

The reasons for certification

Major construction projects have an aim to reduce their impact on the local environment e.g. HS2

- Reduce local air quality impact by setting requirements
- Retrofit of NRMM as a compliance option considered
- Creating a market opportunity for retrofit system suppliers

A need for an assurance scheme to help

- support the project delivery body
- contractors choose wisely
- differentiate suppliers of emissions reduction systems

The **EST Endorsed Product** scheme was designed for this purpose

EST Endorsed Product - certification of emission reduction systems for NRMM

A list of suppliers and products that meet the requirements of the

scheme

Company Requirements Product Performance Requirements

Legal entity

- Financial stability
- Quality management
- Installation standards
- Insurance cover
- Warranty provision
- Licensing agreements

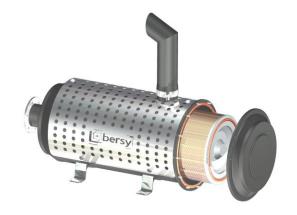
Listing on the EST Register (online resource)

 PM reduction (85% minimum)

NO₂ "slip"

Companies certified by EST

Swarter, Safer, Greener



Emission reduction systems certified by EST

What to look for when out on site?

- Before going on site check out the NRMM Site and Machinery Register
- Machinery inventories and the degree of understanding of policy by site personnel
- Machinery with visible emissions of soot
- Engine type approval plates to determine the level of compliance
- The logos of EST listed suppliers on exhaust systems
- Certificates of installation with dates

This not this!

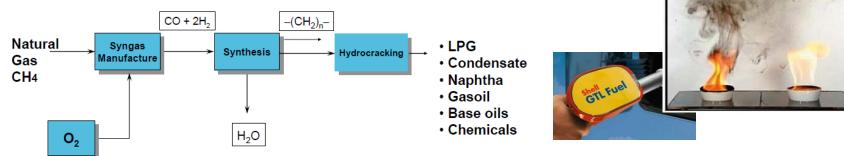
Example area of interest

- Generators

- Generators generally use constant speed engines
 - Currently enjoy an exemption
- Engines are subject to less stringent emission regulations
- Generators tend to be over sized due to "just in case" and "what's available"
 - Leading to engines running at low loads and inefficiently
 - ➤ Higher emissions than necessary
 - Emission control systems struggle to work

Potential solution

- Correctly size the generator
- Use generators with variable speed engines, hybrid or energy storage capability



Example area of interest

- Paraffinic diesel fuels (e.g. GTL or HVO)
- "Gas to Liquid" fuels or "hydrotreated vegetable oil"
- Use of paraffinic diesel <u>may</u> reduce emissions of PM and NOx
- Will not be enough to get from one stage level to the next on its own

• A best practice that may help with emission reduction

Awaiting definitive test data

Thank you for your attention

